A link between LRRK2, autophagy and NAADP-mediated endolysosomal calcium signalling.
نویسندگان
چکیده
Mutations in LRRK2 (leucine-rich repeat kinase 2) represent a significant component of both sporadic and familial PD (Parkinson's disease). Pathogenic mutations cluster in the enzymatic domains of LRRK2, and kinase activity seems to correlate with cytotoxicity, suggesting the possibility of kinase-based therapeutic strategies for LRRK2-associated PD. Apart from cytotoxicity, changes in autophagy have consistently been observed upon overexpression of mutant, or knockdown of endogenous, LRRK2. However, delineating the precise mechanism(s) by which LRRK2 regulates autophagy has been difficult. Recent data suggest a mechanism involving late steps in autophagic-lysosomal clearance in a manner dependent on NAADP (nicotinic acid-adenine dinucleotide phosphate)-sensitive lysosomal Ca2+ channels. In the present paper, we review our current knowledge of the link between LRRK2 and autophagic-lysosomal clearance, including regulation of Ca2+-dependent events involving NAADP.
منابع مشابه
Leucine-rich repeat kinase 2 regulates autophagy through a calcium-dependent pathway involving NAADP
Mutations in the leucine-rich repeat kinase-2 (LRRK2) gene cause late-onset Parkinson's disease, but its physiological function has remained largely unknown. Here we report that LRRK2 activates a calcium-dependent protein kinase kinase-β (CaMKK-β)/adenosine monophosphate (AMP)-activated protein kinase (AMPK) pathway which is followed by a persistent increase in autophagosome formation. Simultan...
متن کاملDysregulation of lysosomal morphology by pathogenic LRRK2 is corrected by TPC2 inhibition
Two-pore channels (TPCs) are endolysosomal ion channels implicated in Ca(2+) signalling from acidic organelles. The relevance of these ubiquitous proteins for human disease, however, is unclear. Here, we report that lysosomes are enlarged and aggregated in fibroblasts from Parkinson disease patients with the common G2019S mutation in LRRK2. Defects were corrected by molecular silencing of TPC2,...
متن کاملCalcium signals regulated by NAADP and two-pore channels--their role in development, differentiation and cancer.
Ca(2+) signals regulate a wide range of physiological processes. Intracellular Ca(2+) stores can be mobilized in response to extracellular stimuli via a range of signal transduction mechanisms, often involving recruitment of diffusible second messenger molecules. The Ca(2+) mobilizing messengers InsP 3 and cADPR release Ca(2+) from the endoplasmic reticulum via InsP 3 and ryanodine receptors, r...
متن کاملNovel ethyl methanesulfonate (EMS)-induced null alleles of the Drosophila homolog of LRRK2 reveal a crucial role in endolysosomal functions and autophagy in vivo
Mutations in LRRK2 cause a dominantly inherited form of Parkinson's disease (PD) and are the most common known genetic determinant of PD. Inhibitor-based therapies targeting LRRK2 have emerged as a key therapeutic strategy in PD; thus, understanding the consequences of inhibiting the normal cellular functions of this protein is vital. Despite much interest, the physiological functions of LRRK2 ...
متن کاملGlutamate induces autophagy via the two-pore channels in neural cells
NAADP (nicotinic acid adenine dinucleotide phosphate) has been proposed as a second messenger for glutamate in neuronal and glial cells via the activation of the lysosomal Ca2+ channels TPC1 and TPC2. However, the activities of glutamate that are mediated by NAADP remain unclear. In this study, we evaluated the effect of glutamate on autophagy in astrocytes at physiological, non-toxic concentra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemical Society transactions
دوره 40 5 شماره
صفحات -
تاریخ انتشار 2012